地盤特性を踏まえた地震波の作成と橋梁の耐震設計法について

(株) アルファ 正員 ○石崎剛 正員 高田竜 正員 高田和年 秋村知史(株) アルファ フェロー 城秀夫九州産業大学 フェロー 水田洋司

1. はじめに

近年,道路橋の耐震設計は非線形動的解析で実施さ れ,その入力地震動波形は道路橋示方書 V 耐震設計編 に規定されており,これを用いて解析することとなっ ている.本論文では,道路橋示方書(以下,「道示」) に準じて設計した2径間連続モデル橋梁について,次 に示す解析を行い,架橋地点の地盤特性を踏まえた橋 梁耐震設計方法の提案を行う.

a) 架橋地点の地盤特性を踏まえた地表面地震波の作成b) a) を用いた橋梁の耐震設計

a)は、地震基盤面波に熊本地震の益城町観測点強震 記録を用いI種地盤、III種地盤(福岡県北九州市の軟 弱地盤を想定)の地表面地震波を作成した.b)は、橋 梁と地盤との共振に着目する耐震設計を実施した。

2. 道路橋示方書に基づいた橋梁の設計

表-1,2に設計条件および解析条件を示す.地盤種別は I種および III 種地盤を想定し,基礎形式はそれぞれ

重要度区分	,地域区分	B種の橋 , C地域				
地盤種別		I 種地盤およびⅢ種地盤				
上部構造		鋼2径間連続非合成鈑桁橋				
下部構造	橋台,橋脚	逆T式橋台 , 張出式橋脚				
基礎	I種地盤上	直接基礎				
	Ⅲ種地盤上	場所打ち杭 (φ1200)				
支承条件	分散型ゴム支承	橋台 : K=7040kN/m				
		橋脚 : K=27588kN/m				
上部工	A1橋台, P1橋脚, A2橋台	1197kN, 3907kN, 1197kN				
死荷重反力	合計	6301kN				

表-2 解析条件

表-1 設計条件

				1>1<11				
	解析方	向		橋軸方向				
	解析方	法		時刻歷応答解析(直接積分法)				
	積分方	法		Newmark-β法 (β=0.25)				
	入力地震動 I 種地盤			タイプ II − I −1~3波				
			Ⅲ種地盤	タイプⅡ-Ⅲ-1~3波				
	解析時の減衰評価			Rayleigh減衰				
	笔计	鋼上部構造 , 支承		2% , 3%(弾性支承)				
	阀衰 定数	下部構造	はり要素	5%(線形), 2%(非線形)				
		基礎		10%(I種地盤),20%(Ⅲ種地盤)				
	は其ぶの非線形特性 除毒時剛性Kr ¹⁾			M- d (Takeda) チデル Kr=0.5				

図-1 解析モデル

直接基礎と杭基礎とした.図-1に解析モデルを示す.III 種地盤の土質定数は後述の表-5に示している.下部構 造の諸元は,躯体を静的・動的設計手法,基礎を静的 設計手法により設定した.表-3に非線形動的解析の結 果を示す.

表-3 非線形動的解析結果(道示設計)

	入力波形	I 種地盤(Ⅱ-I-1~3)		Ⅲ種地盤(Ⅱ-Ⅲ-1~3)				
1 次 の 固 有 周 期				T = 0.886 sec		T = 0.874 sec		
慣 性 力 作 用 位 置 の 結 果					変位	水平力	変位	水平力
最大応答変位・水平力 3波平均 (mm) (kN)					147.4	4065	131.3	3621
柱 部 材 の 照 査 結 果					P1橋脚		P1橋脚	
鉄筋量	橋軸主鉄筋			D29ctc125-1.0段		D29ctc125-1.0段		
	直角主鉄筋			D29ctc250-1.0段		D29ctc250-1.0段		
	橋軸せん断補強(横拘束筋)			D16-6本ctc150		D16-6本ctc150		
	直角せん断補強(横拘束筋)			D16-3本ctc150		D16-3本ctc150		
	最大応答曲率(3波平均) φd (1/m)			0.010673		0.012275		
曲げに 対する 照査	降伏曲率 φyo "			0.002993		0.002993		
	許容曲率 φa "				0.017208		0.017208	
	比率	: φd/φyo	7o(応答領域)		3.57 (≧1 塑性域)		4.1 (≧1 塑性域)	
		∶ ¢d/¢a	(判定)	0.62 (≦1 OK)	0.71 (≦1 OK)

3. 架橋地点での地震波の作成

架橋地点での地震波の作成には、2016 年 4 月に発生 した熊本地震本震益城観測点強震記録の地震基盤面波 (KiK-NET²⁾より)を用いた.なお、本解析では 3 成分 の強震記録のうち E-W 成分に着目した.

(a) I 種地盤の入力地震動波形は益城観測点の土質 柱状図(K-NET²⁾より)を用いた地震基盤面から工学的 基盤面への引き上げ解析を行い作成した.続いて,(b) III 種地盤の入力地震動波形は,架橋想定地点での土質 柱状図を用いて工学的基盤面から地表面への引き上げ 解析を実施した.表-4,5に(a)(b)の解析条件,図-2, 3に解析で得られた地震波を示す.

また、(a) では地表面までの引き上げ解析を実施し、 益城観測点の観測波とのパワースペクトルを比較した. その結果を図-5 に示す.図-4 より、解析で得られた地 震波と観測波の卓越周期は概ね一致している.

表-4 (a) の解析条件

				-					
岩種区分	$\rho \ (t/m^3)$	層厚 (m)	深度 (m)	区間速度 S波(m/s)	減衰定数 (%)	歪依存曲線			
to the second second	1.7	4.0	4.0	110	4.50				
火山灰真柏工	1. (5.0	9.0	0.40		学的 古山田ほか粘性土			
砂	1.8	6.0	15.0	240	2.00	整面 古山田ほか砂質土			
軽石凝灰岩	2.0	18.0	33.0	500	1.00	古山田ほか粘性土			
火山灰質粘土	1.8	8.0	41.0	400	1.25	古山田ほか粘性土			
砂	2.1	10.0	51.0	760	0.65	古山田ほか砂質土			
砂礫	2.2	18.0	69.0	100	0.05	古山田ほか砂質土			
凝灰角礫岩	2.6	22.0	91.0			線形			
安山岩	2.6	6.0	97.0	820	0.60				
凝灰角礫岩	2.6	4.0	101.0	1	も盤の地震	応答解析(a) 線形			
安山岩	2.6	32.0	133.0	1470	0.30	線形			
凝灰角礫岩	2.6	10.0	143.0	700	0.70	線形			
熔結凝灰岩	2.6	26.0	169.0	1380	0.30	線形			
安山岩	2.6	20.0	105.0	1380 0.30 線形					
凝灰岩	2.6					線形			
安山岩	2.6	32.4	201.4	840	0.50	線形			
凝灰岩	2.6					線形			
安山學	2.6	32.6	234.0	1470	0.30	線形			
女山石	2.7	21.0	255.0	2700	0.20	地震基盤面 線形			

4. 耐震設計法の提案

(1) 解析条件

3. で作成した地震波を用いて**2**. の道示設計モデル 橋梁について解析した.

(2) 解析結果

表-6に非線形動的解析結果を示す.最大応答曲率は, 道示設計結果(表-3)と比較し6倍,2倍と大きく,許 容値を超え耐震性を満足しない結果である.

図-5,6に,I種およびIII種地盤のモデル橋梁上部構造における応答加速度のパワースペクトルを示す.図の青線が応答加速度のパワースペクトル(主軸),黒破線は入力加速度のパワースペクトル(第2軸)である.

図-5,6より,道示に準じ設計した橋梁の固有周期が, 入力地震動波形の卓越周期と一致していることが分か

入力波形の種類				I種地盤特有地震波		Ⅲ種地盤特有地震波			
1次の固有周期					T = 0.886 sec		T = 0.874 sec		
慣 性 力 作 用 位 置 の 結 果					変位	水平力	変位	水平力	
最大応答	変位・水平力	最大応答値	(mm)	(kN)	174.2	4805	158.0	4358	
柱 部 材 の 照 査 結 果				P1橋脚		P1橋脚			
	最大応答曲率 φd (1/m)			0.058669		0.022900			
曲げに 対する 照査	降伏曲率 φyo "			0.002993		0.002993			
	許容曲率 φa "			0.017208		0.017208			
	11. 18	: φd/φyo	(応答	領域)	19.6 (≧1	塑性域)	7.65 (≧	1 塑性域)	
	1년 아파	: φd/φa	(判定))	3.41 (>1 OUT)		1.33 (>1 OUT)		

表-6 非線形動的解析結果

る.このことから,橋梁が入力地震動波形と共振して 応答曲率を大きくすると考えられる.

(3) 耐震対策(共振現象への対策)

a) I 種地盤上の橋梁では,地震波の卓越周期が短周期 側となるため,耐震対策は橋梁の長期化を提案する(短 周期化させた場合,地震による橋梁の剛性低下で再び 長周期化することとなる).具体的には,鋼上部構造を PC上部構造に変更し,分散型ゴム支承の剛性を65% 低減させた.

b) III 種地盤上の橋梁では, 地震波の卓越周期が長周期 側となるため, 耐震対策は橋梁の短周期化を提案する. 具体的には, 橋脚上を固定支承に変更した.

図-6,7に対策後のパワースペクトルを赤点線で示す. 対策後は、共振を回避できていることが分かる.この 結果、応答曲率は表-6の結果と比較し両地盤ともに約 1/5に低減され、許容値を満足することができた.

5. おわりに

本解析事例の結果,次のことが分かった.

a) 地震基盤面波より土質柱状図を用いて比較的精度良

く地表面地震波を作成することができる. b) 地盤解析により架橋地点地盤特有の地震波を作成し

その特性(卓越周期)を知ることで、構造物との共振 を避け、耐震性能を向上させることが可能である.

謝辞 本論文を作成するにあたり、多大なご協力を頂 いた橋本晃氏に謝意を表します.

参考文献

- 1)日本道路協会:道路橋示方書·同解説 V 耐震設計編
- 2) 防災科学技術研究所:強震観測網(K-NET, KiK-net)
- 日本建築学会(2006):建物と地盤の動的相互作用 を考慮した応答解析と耐震設計